miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta.
نویسندگان
چکیده
The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress to cause profound anemia in zebrafish embryos. At least some protective activities of miR-451 stem from its ability to directly suppress production of 14-3-3zeta, a phospho-serine/threonine-binding protein that inhibits nuclear accumulation of transcription factor FoxO3, a positive regulator of erythroid anti-oxidant genes. Thus, in miR-144/451(-/-) erythroblasts, 14-3-3zeta accumulates, causing partial relocalization of FoxO3 from nucleus to cytoplasm with dampening of its transcriptional program, including anti-oxidant-encoding genes Cat and Gpx1. Supporting this mechanism, overexpression of 14-3-3zeta in erythroid cells and fibroblasts inhibits nuclear localization and activity of FoxO3. Moreover, shRNA suppression of 14-3-3zeta protects miR-144/451(-/-) erythrocytes against peroxide-induced destruction, and restores catalase activity. Our findings define a novel miRNA-regulated pathway that protects erythrocytes against oxidant stress, and, more generally, illustrate how a miRNA can influence gene expression by altering the activity of a key transcription factor.
منابع مشابه
Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta.
Erythrocyte formation occurs throughout life in response to cytokine signaling. We show that microRNA-451 (miR-451) regulates erythropoiesis in vivo. Mice lacking miR-451 display a reduction in hematrocrit, an erythroid differentiation defect, and ineffective erythropoiesis in response to oxidative stress. 14-3-3zeta, an intracellular regulator of cytokine signaling that is repressed by miR-451...
متن کاملDietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway
One fundamental issue in public health is the safety of food products derived from plants and animals. A recent study raised a concern that microRNAs, which widely exist in everyday foods, may alter consumers' functions. However, some studies have strongly questioned the likelihood of dietary uptake of functional microRNAs in mammals. Here we use a microRNA gene knockout animal model to show th...
متن کاملSerine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death.
Oxidant stress is a ubiquitous stressor with negative impacts on multiple cell types. ASK1 is a central mediator of oxidant injury, but while mechanisms of its inhibition, such as sequestration by 14-3-3 proteins and thioredoxin, have been identified, mechanisms of activation have remained obscure and the signaling pathways regulating this are not clear. Here, we report that phosphorylation of ...
متن کاملSimultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell
Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...
متن کاملThe miR-144/451 locus is required for erythroid homeostasis
The process of erythropoiesis must be efficient and robust to supply the organism with red bloods cells both under condition of homeostasis and stress. The microRNA (miRNA) pathway was recently shown to regulate erythroid development. Here, we show that expression of the locus encoding miR-144 and miR-451 is strictly dependent on Argonaute 2 and is required for erythroid homeostasis. Mice defic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 24 15 شماره
صفحات -
تاریخ انتشار 2010